A Holistic Approach to Uncertainty Quantification with Application to Supersonic Nozzle Thrust

نویسندگان

  • Christopher J. Roy
  • Michael S. Balch
چکیده

In modeling and simulation (M&S), we seek to predict the state of a system using a computer-based simulation of a differential equation-based model. In general, the inputs to the model may contain uncertainty due to inherent randomness (aleatory uncertainty), a lack of knowledge (epistemic uncertainty), or a combination of the two. In many practical cases, there is so little knowledge of a model input that it should be characterized as an interval, the weakest statement of knowledge. When some model inputs are probabilistic and others are intervals, segregated uncertainty propagation should be used. The resulting uncertainty structure on the M&S output can take the form of a cumulative distribution function with a finite width, i.e., a p-box. Implications of sampling over interval versus probabilistic uncertainties in the outer loop are discussed and examples are given showing the effects of the choice of uncertainty propagation and characterization methods. In addition to the uncertainties in model inputs, uncertainties also arise due to modeling deficiencies and numerically approximations. Modeling uncertainties can be reduced by performing additional experiments and numerical uncertainties can be reduced by using additional computational resources; thus both sources of uncertainty can be modeled as epistemic and can be characterized as intervals and included in the total predictive uncertainty by appropriately broadening the prediction p-box. A simple example is given for the M&S predictions of supersonic nozzle thrust which incorporates and quantifies all three sources of uncertainty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Studies on Thrust Vectoring Using Shock Induced Supersonic Secondary Jet

Numerical studies have been carried out using a validated two-dimensional RNG k-epsilon turbulence model for the design optimization of a thrust vector control system using shock induced supersonic secondary jet. Parametric analytical studies have been carried out with various secondary jets at different divergent locations, jet interaction angles, jet pressures. The results from the parametric...

متن کامل

A Theoretical Mass Transfer Approach for Prediction of Droplets Growth Inside Supersonic Laval Nozzle

Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic separators performance for separation of fine droplets from a gas stream. Up to now, all available researches employ empirical or semi-empirical correlations to define the relationship between droplet growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P...

متن کامل

Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the mai...

متن کامل

Static Performance of a . . .

A m ultiaxis thrust-vectoring nozzle designed to have equal ow-turning capability in pitch and yaw was conceived and experimentally tested for internal static performance at Langley Research Center. The cruciform-shaped, convergent-divergent nozzle turned the ow for thrust vectoring by deeecting the divergent surfaces of the nozzle, called aps. Methods for eliminating physical interference betw...

متن کامل

Static Performance of a . . .

A multiaxis thrust-vectoring nozzle designed to have equal ow-turning capability in pitch and yaw was conceived and experimentally tested for internal static performance at Langley Research Center. The cruciform-shaped, convergent-divergent nozzle turned the ow for thrust vectoring by deeecting the divergent surfaces of the nozzle, called aps. Methods for eliminating physical interference betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012